Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(11): e11594, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425411

RESUMO

The release of fine particles during mechanical landfill mining (LFM) operations is a potential environmental pollution and human health risk. Previous studies demonstrate that a significant proportion (40-80% wt) of the content of fine soil-like materials within the size range <10 mm to <4 mm recovered from such operations originate from municipal solid waste (MSW) landfills. This study evaluates the potential health risks caused by emissions from LFM activities. MSW samples recovered from the drilling of four different wells of a closed UK landfill were analysed for physical, chemical, and biological properties to determine the extent of potential contaminant emissions during LFM activities. The results show that fine particles (approximately ≤1.5 mm) accounted for more than 50% of the total mass of excavated waste and contained predominantly soil-like materials. The concentrations of Zn, Cu, Pb, Cd, As, and Cr exceed the permissible limits set by the current UK Soil Guideline Values. The highest geoaccumulation index and contamination factor values for Cu were 2.51 and 12.51, respectively, indicating a moderate to very high degree of contamination. Unsurprisingly, the pollution load index was >1, indicating the extent of pollution within the study area. The hazard quotient values indicated high exposure-related risks for Pb (16.95), Zn (3.56), Cd (1.47), and As (1.46) for allotment land use and As (1.96) for residential land use. The cancer-related risk values were higher than the acceptable range of 1.0 × 10-6 to 1.0 × 10-4. The cancer risk factor indicated that Cr and As were the major human health risk hazards.

2.
Sci Total Environ ; 812: 151440, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742971

RESUMO

Recent research on the magnetisation of biochar, a carbon-based material that can be used as a sorbent, has opened novel opportunities in the field of environmental remediation, as incorporating magnetic particles into biochar can simplify subsequent separation. This could offer a sustainable circular economy-based solution in two areas of waste management; firstly, pyrolysis of agricultural waste for magnetic biochar synthesis could reduce greenhouse gas emissions derived from traditional agricultural waste processing, such as landfill and incineration, while secondly, application of magnetic biochar to remove excess nitrogen from soils (made possible through magnetic separation) could provide opportunities for this pollutant to be used as a recycled fertiliser. While sorption of pollutants by magnetic biochar has been researched in wastewater, few studies have investigated magnetic biochar use in polluted soils. Nitrogen pollution (e.g. NH4+), stemming from agricultural fertiliser management, is a major environmental and economic issue that could be significantly reduced before losses from soils occur. This review demonstrates that the use of magnetic biochar tailored to NH4+ adsorption has potential to remove (and recycle for reuse) excess nitrogen from soils. Analysis of research into recovery of NH4+ by sorption/desorption, biochar magnetisation and biochar-soil interactions, suggests that this is a promising application, but a more cohesive, interdisciplinary approach is called for to elucidate its feasibility. Furthermore, research shows variable impacts of biochar upon soil chemistry and biology, such as pH and microbial diversity. Considering wide concerns surrounding global biodiversity depletion, a more comprehensive understanding of biochar-soil dynamics is required to protect and support soil ecosystems. Finally, addressing research gaps, such as optimisation and scaling-up of magnetic biochar synthesis, would benefit from systems thinking approaches, ensuring the many complex considerations across science, industry, policy and economics are connected by circular-economy principles.


Assuntos
Compostos de Amônio , Poluentes do Solo , Carvão Vegetal , Ecossistema , Fenômenos Magnéticos , Solo
3.
Polymers (Basel) ; 12(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113873

RESUMO

In the last two decades, the application of microwave heating to the processing of materials has to become increasingly widespread. Microwave-assisted foaming processes show promise for industrial commercialization due to the potential advantages that microwaves have shown compared to conventional methods. These include reducing process time, improved energy efficiency, solvent-free foaming, reduced processing steps, and improved product quality. However, the interaction of microwave energy with foaming materials, the effects of critical processing factors on microwave foaming behavior, and the foamed product's final properties are still not well-explored. This article reviews the mechanism and principles of microwave foaming of different materials. The article critically evaluates the impact of influential foaming parameters such as blowing agent, viscosity, precursor properties, microwave conditions, additives, and filler on the interaction of microwave, foaming material, physical (expansion, cellular structure, and density), mechanical, and thermal properties of the resultant foamed product. Finally, the key challenges and opportunities for developing industrial microwave foaming processes are identified, and areas for potential future research works are highlighted.

4.
Sci Total Environ ; 715: 136945, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007897

RESUMO

Bioleaching (or microbial leaching) is a biohydrometallurgical technology that can be applied for metal recovery from anthropogenic waste streams. In particular, fly ashes and bottom ashes of municipal solid waste incineration (MSWI) can be used as a target material for biomining. Globally, approximately 46 million tonnes of MSWI ashes are produced annually. Currently landfilled or used as aggregate, these contain large amounts of marketable metals, equivalent to low-grade ores. There is opportunity to recover critical materials as the circular economy demands, using mesophile, moderately thermophile, and extremophile microorganisms for bioleaching. A Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis was developed to assess the potential of this biotechnology to recover critical metals from MSWI wastes. Bioleaching has potential as a sustainable technology for resource recovery and enhanced waste management. However, stakeholders can only reap the full benefits of bioleaching by addressing both the technical engineering challenges and regulatory requirements needed to realise and integrated approach to resource use.


Assuntos
Gerenciamento de Resíduos , Cinza de Carvão , Incineração , Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...